42 research outputs found

    Inflammatory Mediator TAK1 Regulates Hair Follicle Morphogenesis and Anagen Induction Shown by Using Keratinocyte-Specific TAK1-Deficient Mice

    Get PDF
    Transforming growth factor-β-activated kinase 1 (TAK1) is a member of the NF-κB pathway and regulates inflammatory responses. We previously showed that TAK1 also regulates keratinocyte growth, differentiation, and apoptosis. However, it is unknown whether TAK1 has any role in epithelial–mesenchymal interactions. To examine this possibility, we studied the role of TAK1 in mouse hair follicle development and cycling as an instructive model system. By comparing keratinocyte-specific TAK1-deficient mice (Map3k7fl/flK5-Cre) with control mice, we found that the number of hair germs (hair follicles precursors) in Map3k7fl/flK5-Cre mice was significantly reduced at E15.5, and that subsequent hair follicle morphogenesis was retarded. Next, we analyzed the role of TAK1 in the cyclic remodeling in follicles by analyzing hair cycle progression in mice with a tamoxifen-inducible keratinocyte-specific TAK1 deficiency (Map3k7fl/flK14-Cre-ERT2). After active hair growth (anagen) was induced by depilation, TAK1 was deleted by topical tamoxifen application. This resulted in significantly retarded anagen development in TAK1-deficient mice. Deletion of TAK1 in hair follicles that were already in anagen induced premature, apoptosis-driven hair follicle regression, along with hair follicle damage. These studies provide the first evidence that the inflammatory mediator TAK1 regulates hair follicle induction and morphogenesis, and is required for anagen induction and anagen maintenance

    Role of Dok-1 and Dok-2 in Myeloid Homeostasis and Suppression of Leukemia

    Get PDF
    Dok-1 and Dok-2 are closely related rasGAP-associated docking proteins expressed preferentially in hematopoietic cells. Although they are phosphorylated upon activation of many protein tyrosine kinases (PTKs), including those coupled with cytokine receptors and oncogenic PTKs like Bcr-Abl, their physiological roles are largely unidentified. Here, we generated mice lacking Dok-1 and/or Dok-2, which included the double-deficient mice succumbed to myeloproliferative disease resembling human chronic myelogenous leukemia (CML) and chronic myelomonocytic leukemia. The double-deficient mice displayed medullary and extramedullary hyperplasia of granulocyte/macrophage progenitors with leukemic potential, and their myeloid cells showed hyperproliferation and hypo-apoptosis upon treatment and deprivation of cytokines, respectively. Consistently, the mutant myeloid cells showed enhanced Erk and Akt activation upon cytokine stimulation. Moreover, loss of Dok-1 and/or Dok-2 induced blastic transformation of chronic phase CML-like disease in mice carrying the bcr-abl gene, a cause of CML. These findings demonstrate that Dok-1 and Dok-2 are key negative regulators of cytokine responses and are essential for myeloid homeostasis and suppression of leukemia

    CLINICAL APPLICATION OF EX VIVO PRODUCED ORAL MUCOSA EQUIVALENT

    No full text

    Eccrine sweat contains IL-1α, IL-1β and IL-31 and activates epidermal keratinocytes as a danger signal.

    Get PDF
    Eccrine sweat is secreted onto the skin's surface and is not harmful to normal skin, but can exacerbate eczematous lesions in atopic dermatitis. Although eccrine sweat contains a number of minerals, proteins, and proteolytic enzymes, how it causes skin inflammation is not clear. We hypothesized that it stimulates keratinocytes directly, as a danger signal. Eccrine sweat was collected from the arms of healthy volunteers after exercise, and levels of proinflammatory cytokines in the sweat were quantified by ELISA. We detected the presence of IL-1α, IL-1β, and high levels of IL-31 in sweat samples. To investigate whether sweat activates keratinocytes, normal human keratinocytes were stimulated with concentrated sweat. Western blot analysis demonstrated the activation of NF-κB, ERK, and JNK signaling in sweat-stimulated keratinocytes. Real-time PCR using total RNA and ELISA analysis of supernatants showed the upregulation of IL-8 and IL-1β by sweat. Furthermore, pretreatment with IL-1R antagonist blocked sweat-stimulated cytokine production and signal activation, indicating that bioactive IL-1 is a major factor in the activation of keratinocytes by sweat. Moreover, IL-31 seems to be another sweat stimulator that activates keratinocytes to produce inflammatory cytokine, CCL2. Sweat is secreted onto the skin's surface and does not come into contact with keratinocytes in normal skin. However, in skin with a defective cutaneous barrier, such as atopic dermatitis-affected skin, sweat cytokines can directly act on epidermal keratinocytes, resulting in their activation. In conclusion, eccrine sweat contains proinflammatory cytokines, IL-1 and IL-31, and activates epidermal keratinocytes as a danger signal

    Novel Immediate-Early Protein IE19 of Human Cytomegalovirus Activates the Origin Recognition Complex I Promoter in a Cooperative Manner with IE72

    No full text
    The major immediate-early (MIE) gene of human cytomegalovirus (HCMV) expresses IE86, IE72, IE55, and IE18 mRNA by differential splicing. Reverse transcription-PCR with IE72-specific primers generated an 0.65-kb cDNA from HCMV-infected fibroblast RNA, which does not correspond to any known MIE cDNA. Nucleotide sequencing revealed that the 0.65-kb cDNA is from exons 1, 2, and 3 and part of exon 4, indicating that it is derived from a novel alternatively spliced mRNA of the MIE gene. The cDNA encodes a 172-amino-acid polypeptide, termed IE19, which corresponds to an IE72 variant with an internal deletion from Val(86) to Pro(404) and appears as a band at 38 kDa on a sodium dodecyl sulfate-polyacrylamide gel. IE19 mRNA was expressed at a low level in the immediate-early, early, and late period of viral infection. IE19 was localized in nuclei, and a transient-expression assay revealed that IE19 enhances IE72-dependent activation of the HsOrc1 promoter, which is identified here as an IE72 target promoter. Another MIE protein, IE86, activated the same promoter but only weakly compared to IE72, and coexpression of IE19 did not alter the IE86-mediated transcriptional activation. In addition, IE19 did not enhance the IE72-dependent activation of the HCMV UL54 promoter. These results suggest that IE19 is a transcriptional coactivator that works with IE72
    corecore